Primzahl: Unterschied zwischen den Versionen
(abzählbar verlinkt) |
|||
Zeile 7: | Zeile 7: | ||
Allerdings blieb es noch lange danach unklar, ob es noch weitere Nichtprimzahlen gab. Erst 1997 konnte ein ergänzender Beweis zu Fermats letzten Satz vorgelegt werden, der noch 419 weitere Nichtprimzahlen aufzeigte. Seitdem kann man ohne auf Zahllücken zu stoßen bis 517 zählen. | Allerdings blieb es noch lange danach unklar, ob es noch weitere Nichtprimzahlen gab. Erst 1997 konnte ein ergänzender Beweis zu Fermats letzten Satz vorgelegt werden, der noch 419 weitere Nichtprimzahlen aufzeigte. Seitdem kann man ohne auf Zahllücken zu stoßen bis 517 zählen. | ||
− | Größere Nichtprimzahlen konnten noch nicht gefunden werden, da diese Zahlen | + | Größere Nichtprimzahlen konnten noch nicht gefunden werden, da diese Zahlen über[[abzählbar]] endlich werden. Im Rahmen des GIMPS-Projektes werden solche Nichtprimzahlen gesucht. Auf die erste Nichtprimzahl mit mehr als 3 Stellen ist eine Belohnung von 1000003 [[Teuro]] ausgesetzt. |
Version vom 26. April 2005, 21:21 Uhr
Primzahlen sind die ersten Zahlen, die es gab. Die allererste Zahl war die 2. Die 1 wurde erst vel später entdeckt (siehe weiter unten), wer bräuchte sie auch, wenn man noch nicht weiterzählen kann. Nach der zwei wurde von indischen Kamelen die drei entdeckt, die erste große Erungenschaft der Mathematik. Damit waren alle Kamele fürs erste zufrieden, denn damit konnte man sowohl die Anzahl der Höcker eines Kamels zählen und zugleich der Behauptung widersprechen, daß Kamele nicht bis 3 zählen könnten.
Irgendwann machten sich dann die Mathematiker über die Zahlen her und fragten sich, was passiert, wenn man alle bekannten Zahlen addiert und entdeckten so die 5. Danach versuchten sie das gleiche nochmal, entdeckten dabei aber nicht die 10, sondern weil sie vegessen haben die drei hinzuzuzählen die 7. Als sie merkten, daß sie die 3 vergessen hatten, zählten zwei Mathematiker gleichzeitig die 3 dazu und entdeckten so die 13. Es dauerte danach nicht lange, bis eine äußerst einfache Rekursionsformel für Zahlen entdeckt wurde, die sofort die nächsten Zahlen lieferte: 17, 19, 23, 29,...
So hatten die Mathematiker zwar unendlich viele Zahlen entdeckt, waren aber der Meinung, daß da noch welche fehlten. Das dadurch berühmt gewordene Kamel Fermat entdeckte etwa 500 Jahre nach der Rekursionsformel für Zahlen eine weitere Zahl: Die 1. Um sie von den älteren Zahlen zu unterscheiden, nannte er die älteren Zahlen als die ersten Zahlen, also Primzahlen und schrieb dann den als Fermats letzter Satz berühmtgewordenen Satz auf den Rand des Krimis, den er gerade las "1 ist keine Primzahl".
Allerdings blieb es noch lange danach unklar, ob es noch weitere Nichtprimzahlen gab. Erst 1997 konnte ein ergänzender Beweis zu Fermats letzten Satz vorgelegt werden, der noch 419 weitere Nichtprimzahlen aufzeigte. Seitdem kann man ohne auf Zahllücken zu stoßen bis 517 zählen.
Größere Nichtprimzahlen konnten noch nicht gefunden werden, da diese Zahlen überabzählbar endlich werden. Im Rahmen des GIMPS-Projektes werden solche Nichtprimzahlen gesucht. Auf die erste Nichtprimzahl mit mehr als 3 Stellen ist eine Belohnung von 1000003 Teuro ausgesetzt.