Unumstößliche Zahlen: Unterschied zwischen den Versionen

aus Kamelopedia, der wüsten Enzyklopädie
Zur Navigation springen Zur Suche springen
(boah, jetzt sogar animiert!)
(Ich bin mal ganz arg dreist und nominiere meinen eigenen Artikel fürs GaGa (sorry!))
Zeile 1: Zeile 1:
 +
{{wahl|22:46, 7. Mär 2007 (CET)}}
 +
 
[[Bild:Die unumstößliche 2.png|thumb|Die 2 ist die einzige bekannte unumstößliche natürliche Zahl]]
 
[[Bild:Die unumstößliche 2.png|thumb|Die 2 ist die einzige bekannte unumstößliche natürliche Zahl]]
  

Version vom 7. März 2007, 22:46 Uhr

Wiki doof.png
Wiki sagt:  []
Die 2 ist die einzige bekannte unumstößliche natürliche Zahl

Eine Zahl heißt unumstößlich (auch: selbstständig), wenn sie nicht umfällt sobald sie geschuppst wird oder total breit ist. Alle anderen Zahlen heißen stößlich. Von den natürlichen Zahlen Stößliche 1.png, Unumstößliche 2.png, Stößliche 3.png, Stößliche 4.png, Stößliche 5.png, Stößliche 6.png, Stößliche 7.png, Stößliche 8.png und Stößliche 9.png wurde bis jetzt nur die Unumstößlichkeit der Unumstößliche 2.png experimentell nachgewiesen. Man nimmt an, dass dies an ihrem breiten Huf liegt, daher heißt es im Volksmund auch: „die Unumstößliche 2.png steht wie eine Stößliche 1.png.

Ferner kann davon ausgegangen werden, dass alle heiligen und scheinheiligen Zahlen wie etwa <math>\pi</math> unumstößlich sind – letztere hat immerhin zwei Beine und ein Dach überm Kopf.

Die Versuche zur Stößlichkeit von Zahlen wurden nach Protesten des Zahlenschutzvereins eingestellt, da diese befürchteten, Zahlen könnten sich beim Umfallen weh tun.

Beweis der Unumstößlichkeit der Zahl 2

Einen ersten Versuch zu beweisen, dass die Unumstößliche 2.png eine unumstößliche Zahl sei, unternahm der schweizer Mathematiker Kamelonhard Euler im Jahre Stößliche 1.pngStößliche 6.pngStößliche 4.pngStößliche 7.png. Leider war dieser Beweis selbst stößlich und ist kaputt gegangen als Euler niesen musste. Danach hatte er keine Lust mehr und beschäftigte sich lieber mit seiner Lieblingsbeschäftigung. Immerhin wurden die Überreste dieses Beweises von Eulers Putzfrau zusammengekehrt und sind uns so erhalten geblieben:

Eulers Beweis der Unumstößlichkeit.png

Tatsächlich hatte Euler – ohne es zu merken – zumindest einen praktischen Beweis geliefert, und die nach ihm benannte Formel „der kaputte Euler“ (nicht zu verwechseln mit dem „kleinen Gauß“) wird in der entsprechenden Literatur als Meilenstein der experimentellen Statik (baue ein Haus und schaue hinterher, wie lange es hält) angeführt 2.

Die Stößlichkeit in der Mengenleere

Alles kaputt

Sei Menge der Stößlichen Zahlen.png die Menge aller stößlichen Zahlen, so lassen sich zwei Untermengen zu dieser beschreiben:

Zahlen, die zwar umgefallen, aber dabei heil geblieben sind (die sog. Ganzstößlichen Zahlen Menge der ganzstößlichen Zahlen.png )

Zahlen, die dabei leider zerbrochen sind (die sog. Gebrochenstößlichen Zahlen Menge der gebrochenstößlichen Zahlen.png vgl. Abb. rechts)


Weil die gebrochenstößlichen Zahlen selbst aus vielen Einzelteilen bestehen ist dies die eigentliche Teilmenge der stößlichen Zahlen. Es versteht sich von selbst, dass es keine Schnittmenge aus den „Ganzstößlichen“ und den „Gebrochenstößlichen Zahlen“ geben kann, weil ja letztere zerbrochen, nicht zerschnitten worden sind.

Die Stößlichkeit in der Informatik

Ein typischer Systemabsturz, hervorgerufen durch den stößlichen bienär-Code

Eine praktische Anwendung der Stößlichkeit ist die Informatik. Da Computer nur bienär Zählen, also nur die zwei stößlichen Zahlen Stößliche 0.png und Stößliche 1.png kennen, stürzen sie andauernd ab. In älteren Betrübssystem der Firma Microsoft wurden daher jeweils Stößliche 8.png dieser sog. „Bits“ zu einem „Byte“ zusammengeklebt und sicherheitshalber noch gut verschnürt:

Unumstößliches Byte.png

Der Nachteil dieser Methode ist allerdings, dass der Benutzer keine Möglichkeit hat, ein solches zusammengeklebtes „Byte“ zu bearbeiten (daher lassen sich die sog. „Benutzereinstellungen“ auch nicht verändern).

Im neuen Betrübssystem Windows Vista haben die Entwickler dieses Problem durch ein „unäres“ Zahlensystem behoben, das nur noch aus dem einen unumstößlichen „Bit“ Unumstößliche 2.png besteht. Ein solches unumstößliches „Byte“ sieht dann so aus:

Unumstößliche 2.pngUnumstößliche 2.pngUnumstößliche 2.pngUnumstößliche 2.pngUnumstößliche 2.pngUnumstößliche 2.pngUnumstößliche 2.pngUnumstößliche 2.png

Hier kann nun endlich – etwa mit Hilfe eines Hexeditors – jedes „Bit“ durch ein anderes ersetzt werden, z.B.:

Unumstößliche 2.pngUnumstößliche 2.pngUnumstößliche 2.pngUnumstößliche 2.pngUnumstößliche 2.pngUnumstößliche 2.pngUnumstößliche 2.pngUnumstößliche 2.png

Dieses neue System ist zwar noch in der Testphase, doch die ersten Ergebnisse sind recht viel versprechend. Die Befürchtung der Entwickler, ein unbedarfter Benutzer könnte im Quellkot erheblichen Schaden anrichten, hat sich bis jetzt noch nicht bewahrheitet.

Quallenangabe

2 Dr. Dr. K.A. Mehl: Das Problem der Stößlichkeit. Ein Beitrag zur Mathematik und Architektur; in: Annalen der B(r)aukunst Stößliche 8.png, Stößliche 1.pngStößliche 9.pngStößliche 3.pngStößliche 4.png, S. Stößliche 5.pngStößliche 7.png

Vorlage:Hw

[]